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ABSTRACT

We employed a probabilistic finite element analysis (FEA) method to determine how variability in
material property values affects stress and strain values in a finite model of a Macaca fascicularis
cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic
non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone
and teeth was always treated as isotropic and homogeneous. All material property values for the
cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of
0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the
values of the material properties used in the finite element models. In total, four hundred and twenty
six separate deterministic FE simulations were executed.

We tested four hypotheses in this study: (1) uncertainty in material property values will have an
insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic
models; (2) the effect of variability in material property values on the stress state will increase as non-
homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait
et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial
morphology, but also due to variation in material property values; (4) the assumption of a uniform
coefficient of variation for the material property values will result in the same trend in how moderate-
to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and
anisotropy as the trend found when the coefficients of variation for material property values are
calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth.

When material properties were varied with a constant CV, as non-homogeneity and anisotropy
increased the level of variability in the moderate-to-high strains decreased while the level of variability
in the moderate-to-high stresses increased. However, this is not the pattern observed when CVs calculated
from empirical data were applied to the material properties where the lowest level of variability in both
stresses and strains occurred when the cranium was modeled with a low level of non-homogeneity and
anisotropy. Therefore, when constant material property variability is assumed, inaccurate trends in the
level of variability present in modest-to-high magnitude stresses and strains are produced.

When the cranium is modeled with the highest level of accuracy (high non-homogeneity and
anisotropy) and when randomness in the material properties is calculated from empirical data, there is a
large level of variability in the significant strains (CV=0.369) and a low level of variability in the modest-to-
high magnitude stresses (CV=0.150). This result may have important implications with regard to the
mechanical signals driving bone remodeling and adaptation through natural selection.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background: FEA in biology
Over the past ten years many researchers in comparative

morphology and physical anthropology have adopted finite ele-
ment analysis (FEA) as a tool to simulate feeding biomechanics
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(Strait et al., 2005; Ross et al., 2011; Dumont et al., 2011; Wood
et al., 2011; O’Higgins et al., 2011; Porro et al., 2011; Davis et al.,
2011; Berthaume et al., 2010; Rayfield, 2007; Dumont et al.,
2005). Finite element models of craniofacial skeletal structures
enable researchers to predict the complete stress and strain fields
throughout the cranium as a result of loading conditions that
simulate orofacial functions, such as mastication or ingestion of
mechanically resistant foods, and to test hypotheses regarding
craniofacial shape, feeding performance, and behavior (Strait
et al., 2005; Ross et al., 2011; Ross et al., 2005).

FEA is a computer-based technique used to solve the govern-
ing field equations in continuum mechanics, such as the equa-
tions of elasticity. It is widely used by engineers for structural
analysis, thermal analysis, fluid flow analysis, and electromag-
netic analysis. Initial applications of FEA to biological systems
involved relatively simple geometric idealizations of human
skeletal structures, such as the femur (Brekelmans et al., 1972;
Rybicki et al., 1972). Subsequent improvements in technology
enabled geometrically complex tissue structures to be digitally
reconstructed from CT scans, opening the door to the application
of FEA to a wide variety of biological systems, such as mammalian
skulls (Dumont et al., 2005), dinosaur skulls (Rayfield, 2004),
alligator skulls (Porro et al., 2011; Metzger et al., 2005; Reed et al.,
2011), shark jaws (Wroe et al., 2008), seahorse snouts (Leysen
et al., 2010), and blue crab legs (Hecht et al., 2010).

One of the few finite element models of a biological system
validated by in vivo data is the macaque cranium model devel-
oped by Strait et al. (2005) and Ross et al. (2005) to simulate
feeding biomechanics. (This model was validated again with
additional in vivo data gathered from multiple individuals in
Ross et al. (2011). Other FE models validated with in vivo data
include a rat ulna (Kotha et al., 2004) and an alligator cranium
(Metzger et al., 2005).) It should be noted that there was a large
level of variation in the in vivo data that was used to validate the
macaque cranium model, and understanding from where that
level of variation originated is of particular interest in this study.
In their FE model the researchers varied the type of material
behavior (isotropic versus orthotropic) and the degree to which
material property values vary spatially, i.e. non-homogeneity.
This was assessed by dividing the cranium into numerous regions,
each of which could be assigned different material property
values with different levels of anisotropy. Results from this set
of models were then compared to the range of strain values
measured in vivo on different individuals and collected and
published by various researchers. Since most of the data gathered
from the simulations fell within the dispersion of the in vivo data,
the model was considered validated and to be efficient at
predicting stress and strain patterns on the surface of a macaque
cranium during orofacial function.

Despite such successes, some morphologists have concerns
regarding the deterministic nature of finite element models
(Grine et al., 2010). This is typically not as much an issue in the
engineering world, as considerable effort is expended by engi-
neers to reduce variability in the performance of engineered
products by precise control of the product geometry, material
property values, and environmental loading conditions (if possi-
ble). However, this is not true in the biological world. Material
properties of naturally occurring biological structures, such as
bone, are inherently variable due to inter-individual variation in
sex, age, genetics, and environment (Peterson and Dechow, 2003;
Wang and Dechow, 2006; Zapata et al., 2010; Wang et al., 2010).
These variations can be manifested through varying degrees of
anisotropy and spatial non-homogeneity (Melchers, 1987). Aniso-
tropic material properties of bone are typically accounted for by
orthotropic material models, requiring nine independent elastic
constants and three principal material directions which are

orthogonal to each other (Malvern, 1969). Spatial non-homoge-
neity requires spatially detailed measures of material properties,
which can be accounted for by assigning different material
properties to separate regions in a FEM (Strait et al., 2005;
Porro et al., 2011; Wang and Dechow, 2006).

Anisotropy and spatial non-homogeneity in bone material
properties can produce an increase in spatial variation in stress
and strain values across a single model. When combined with
variation in material properties of other connective tissues (e.g.,
sutures (Reed et al., 2011; Wang et al., 2010; Rayfield, 2005)),
constraining conditions, and external forces, variation in bone
material properties can produce significant variation in model
behavior (Porro et al., 2011). The implications of this variation for
our understanding of biological morphology through natural
selection are only just beginning to be explored.

1.2. Viewing material properties as “random” variables

A parameter whose values are not known precisely due to
uncertainty in measurement and/or other factors is considered to
be a random or stochastic variable. If the variable is continuous, it
may be mathematically modeled by a probability density func-
tion, which mathematically defines the probability that the
variable will have a specific value. It should be emphasized that
randomness in a variable does not require that the variable has
equal probability to take on any possible value between two
extremes. Such a random variable is defined by a uniform
distribution—which would be a rather poor representation of a
material property value. Instead, distributions such as Gaussian,
log normal, or Weibull distribution have been used to model the
natural variability observed in mechanical property values for
both biological and engineered materials (McElhaney et al., 1970;
Hueste et al., 2004). Comparatively, engineered materials tend to
have small coefficients of variation due to high levels of control
during the production process whereas biological materials can
have fairly large coefficients of variations for the reasons alluded
to earlier.

We also note that randomness does not necessarily imply a
lack of order or structure. Two or more random variables may be
correlated, and this correlation imposes a measure of order on the
randomness. For example, consider the Youngs moduli of an
orthotropic material: Es, E;, and E;. These moduli are defined as
the maximum, intermediate, and minimum stiffnesses, respec-
tively, corresponding to three orthogonal directions called princi-
pal material directions. From experimental data, normal
distributions for the moduli can be gathered and correlation
coefficients between them can be determined to increase the
likelihood that E3 > E; > E; (Peterson and Dechow, 2003; Wang
and Dechow, 2006).

1.3. Probabilistic analyses in FEA

Here we apply the techniques of probabilistic FEA to deter-
mine the variability (or randomness) in various output variables
in an FE model of a cranium due to randomness or variability in
material property values. We note that in a conventional finite
element analysis, approximate solutions are found using differ-
ential equations that are deterministic. Deterministic inputs
include boundary conditions such as loads and constraints,
material properties, and geometry. Deterministic outputs include
quantities such as deformation of the specimen and the stress and
strain fields. In probabilistic finite element analysis, there are two
types of techniques used to generate variability in outputs
resulting from the variability in inputs: non-statistical methods
and statistical methods (Sudret and der Kiureghian, 2000; Kang,
2005). Non-statistical methods involve perturbation techniques
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by introducing analytical functional approximations of the
responses about the mean input. The method is computationally
efficient but requires significant mathematical extensions to
conventional FEA algorithms and has not been fully developed
to encompass the breadth of problems that can currently be
solved by conventional FEA tools. As a result, it is not found in
mainstream commercial FEA tools.

In the statistical approach, (which includes methods such as
the Monte Carlo simulation), input parameters are randomized
according to prescribed probabilistic distributions (Gaussian, log-
normal, etc.) and a sampling algorithm. Each set of values for the
random input parameters produces a set of results (i.e. displace-
ment, strain, and stress fields) through deterministic FEA. Post-
processing across all results sets yields statistics for output
variables (i.e. such as deflection at specific nodes, maximum von
Mises stress or strain, or von Mises stress or strain at specific
locations in the mesh). The accuracy of output statistics can be
improved with increased sampling. Statistical sampling techni-
ques, such as Latin Hypercube Sampling, are often employed over
direct Monte Carlo Simulations, to reduce the number of deter-
ministic FEA analyses required, and response surface modeling
approaches can also be used to reduce computational costs.

The probabilistic design portion of ANSYS is an implementa-
tion of the statistical approach (Reh et al., 2006). It takes into
account the natural variability in input variables by applying a
predefined statistical distribution to them. The results can be used
to answer a number of questions, such as if the input variables are
likely to fall within a certain range, how large the range of the
output parameters will be, and which input variables are the most
strongly correlated to each, individual output variable.

Probabilistic finite element analysis is not new to engineers. It is
widely used in reliability-based approaches that predict the prob-
ability of a failure of a system (Melchers, 1987; Der Kiureghian and
Ke, 1988; Cesare and Sues, 1999; Lewis, 1987). However, applica-
tions of probabilistic FEA to biological systems are limited to the
biomedical field. Thacker et al. (2000) used probabilistic FEA to
estimate the contribution to injury probability of 29 materials and
geometry-related parameters of a finite element model of the
lower cervical spine. Nicolella et al. (2001) also used probabilistic
FEA of a false hip joint to determine the probability of shear and
fatigue failure given certain random variables, such as muscle
loading patterns and material properties of the cortical and
trabecular bone. One probabilistic analysis has been used to study
the macaque zygomatic arch (Kupczik et al., 2007).

Because of the limited use of probabilistic finite element
analyses on non-human biological systems, one of the primary
purposes of this paper is to compare the results of probabilistic
analyses to the in vivo data used to validate these models. This
comparison will help to determine whether or not variability in
material properties contributes significantly to strain variability.

1.4. The hypotheses

Four hypotheses are tested in this paper. First, it is hypothe-
sized that variability in bone material property values between
individuals will have little effect on moderate-to-high stresses

Table 1
Description of the six models constructed for the simulations.

regions and a significant effect on moderate-to-high strains for
homogeneous isotropic models. Second, it is hypothesized that
the effect of variability in material property values on the stress
state will increase as non-homogeneity and anisotropy increase in
the material. Third, it is hypothesized that if the first hypothesis is
true, then a significant contribution to variation in the in vivo
shear strain values reported by Strait et al. (2005) and Ross et al.
(2011) may be attributed to variation in material property values
between individuals. Finally, it is hypothesized that the assump-
tion of a constant coefficient of variation for all the material
properties will result in the same trend in the variation in stresses
and strains with respect to the degree of non-homogeneity and
anisotropy as found when the coefficients of variation for material
properties are calculated from empirical data.

The first two hypotheses are based on the observation that the
macaque craniofacial skeleton consists predominantly of cortical
bone (the total cranium volume was 39,359 mm?, with 86.5% of
the cranium volume being cortical bone, 5.8% being teeth, and
7.7% being trabecular bone) and hence is similar to a single-
material structure. In the linear elastic region of material beha-
vior, the stress state for a homogeneous, isotropic single-material
structure is independent of Young’s modulus, but the strain state
is dependent on it (Timoshenko and Goodier, 1970). The volume
of the cranium was calculated using an ANSYS APDL command, a
different method for calculating volume than was used in
Chamoli and Wroe (2011). Also, it should be noted that what
Chamoli and Wroe (2011) define as heterogeneous, we define as
three region isotropic, which we consider to have a low level of
non-homogeneity. Anisotropy and lack of homogeneity violate
the conditions for independence of the stress state on Young's
modulus. Thus, with increasing anisotropy and lack of homoge-
neity, we expect increasing variability in bone stresses due to
stochastic material property values, particularly with respect to
Young’'s modulus. These hypotheses were tested by comparing
the results of the probabilistic analyses to each other.

The third hypothesis could be falsified if variations in strain
due to variation in material property values are relatively small
compared to the level of variation in strain observed in vivo. This
would imply that variability due to material property values
between individuals is secondary to variations in morphological
structure and masticatory loads between individuals. This
hypothesis was tested by comparing the results of the probabil-
istic analyses to the in vivo data. The fourth hypothesis will be
tested by comparing the results of 3 models that have a constant
coefficient of variation of 0.2 applied to them (models 1, 3, and 5,
see Table 1) with the results of 3 models that have coefficients of
variation applied to them which were calculated from empirical
data (models 2, 4, and 6, see Table 1).

2. Materials and methods
2.1. Macaque FE model
The FE model of the macaque cranium used in this study was

constructed by Strait et al. (2005). The macaque model, which
consists of 379,388 elements and 131,293 nodes, was developed

Physical description CV=0.2 for input CV for input variables based Level of non- Level of Number of Number of

of model variables on empirical data homogeneity anisotropy random input variables simulations run
3 Region, isotropic Model 1 Model 2 Low Low 6 30

Multiple region, isotropic Model 3 Model 4 High Low 38 39

Multiple region, orthotropic Model 5 Model 6 High High 143 144
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Fig. 1. Locations tested on the cranium are depicted in navy blue. The 34 locations are numbered 1 to 34. 20 of the 34 locations were chosen because they were the same as
the 20 sites analyzed in Ross et al. (2011) and the other 14 sites were chosen to extend the total number of locations being tested to the entire anterior portion of the
cranium. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

in Algor, a commercial FEA program. However, the model was
imported into ANSYS APDL 13.0 (see www.ansys.com) using the
NASTRAN file format so that ANSYS’s probabilistic and sensitivity
analysis could be utilized. Subsequently, a number of modifica-
tions were made to the model, but the muscle forces remained
unchanged. For more information about the construction of the
model, please see Strait et al. (2005).

For the isotropic material models tested by Strait et al. (2005),
shear modulus, G, Young’s modulus, E, and Poisson’s ratio, v, were
all specified based on empirical data obtained by (Wang and
Dechow, 2006). However, isotropy imposes a relationship
between three properties (E, G, and v) given by the equation:

G=E/Q(1+V) (1)

Thus, for a true isotropic material model only two of the three
properties may be specified independently. In the ANSYS model
for isotropic materials, the values of Young’s modulus and
Poisson’s ratio published by Strait et al. (2005) were utilized
and the program calculated the shear modulus based on the
isotropic relationship of Eq. (1). For orthotropic material behavior,
nine elastic constants are required (Eq, E,, E3, G12, G13, G23, V12, V13,
and v,3) which operate in three orthogonal directions (directions
1, 2, and 3) and on three planes (planes 12, 23, and 13), which
define the principal material directions and planes within each
cranial region.

When the model was constructed by Strait et al. (2005) the
teeth were modeled as part of the cortical bone. For purposes of
this experiment, the teeth were separated from the cortical bone
along the gum line. Because the model was meshed before the
teeth were separated, it was not possible to separate out the roots
of the teeth or the periodontal ligament (PDL) from the
cortical bone.

To simulate the mechanics of biting, an axis of rotation was set
up at the temporomandibular joint (TM]) by constraining a single
node at one TM] in all three coordinate directions and constrain-
ing a single node at the other TM] against anterior-posterior and
superior-inferior motion. However, the node was not constrained
against medial lateral motion, allowing the cranium to deform

laterally (i.e. similar to the “wishboning” seen in mandibles
(Hylander and Johnson, 1994)). The nodes on the occlusal surface
of the left M! were also constrained in the superior-inferior
direction to simulate biting down on a hard food item.

2.2. Applying probabilistic analysis to the FEM

A total of six models of the macaque cranium were created and
analyzed. Each was assigned a unique set of (a) material proper-
ties and/or (b) CVs to the material properties. The analyses for
each model consisted of anywhere between 30 and 144 separate
deterministic FE simulations using the Probabilistic Design por-
tion of ANSYS APDL 13.0 (see Table 1).

The Probabilistic Design module requires three inputs: a
macro code that drives ANSYS, a list of input variables, and a list
of output variables. In Probabilistic Design, the macro code is
executed N number of times, resulting in N separate finite
element analyses. Each deterministic simulation involves a
unique set of input parameters that have been designated as
random input variables. Statistics for each designated output
variable are calculated using the set of N results obtained
corresponding to the N deterministic simulations.

In our analyses the random input variables were the set of
material properties assigned to each model. Primary output
variables were the minimum and maximum principal stresses
and strains and the von Mises stresses and strains, exported from
the set of nodal solutions at 34 sites on the cranium (all depicted
in Fig. 1). The other output variables were &, &,, and 7,, normal
and shear strains at each site, where these strains are based on a
local xyz coordinate system at each of the 34 sites. Each local
coordinate system had its origin located at the node being tested
and the local xy plane was tangent to the surface of the cranium.

For half of the simulations, material property values (the input
variables) were randomized using Gaussian distributions with
mean values obtained from empirical data (Wang and Dechow,

! Engineering shear strain is twice the tensor shear strain.
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2006) and CVs of 0.20. In the other half of the simulations,
material property values were randomized using Gaussian dis-
tributions with mean values obtained from empirical data (Wang
and Dechow, 2006) and standard deviations based on empirical
data (Wang and Dechow, 2006). A truncated Gaussian distribu-
tion was assigned to Poisson’s ratio so it never exceeded 0.4999.
(Values larger than 0.5 violate fundamental thermodynamic
principles and are not allowed in the theory of elasticity.)

A Monte Carlo simulation with Latin hypercube sampling was
used as a method of choosing the values for the random inputs
(Olsson and Sandberg, 2002). When Latin hypercube sampling is
used in conjunction with a Monte Carlo simulation, an accurate
statistical distribution can be obtained while running fewer
simulations. (For more information about Monte Carlo simula-
tions with Latin hypercube sampling and how it is used in FEA,
please refer to Olsson and Sandberg (2002)) The minimum
number of simulations that needed to be run, N, were N=n+1
where n is the number of input variables. N cannot be less than 30
in order to permit a normal distribution for the output variables.
Because of this, 30 simulations were used to randomize input
parameters for models 1 and 2, 39 simulations were used in
models 3 and 4, and 144 simulations were used in models 5 and 6
(see Table 1). The minimum number of simulations was used in
each Monte Carlo simulation because running a total of over 400
FEA simulations back to back can be costly in terms of computer
time and memory. After the analyses were completed, postpro-
cessing in ANSYS provided the values of the output parameters for
each simulation and statistical analyses were conducted to
calculate the maximum shear strain on the surface of the cranium
at each site for comparison to in vivo data (Ross et al., 2011).

2.3. Comparing the results to in vivo data

Simulation results were compared to the in vivo data gathered
on macaques and compiled in Strait et al. (2005) and Ross et al.
(2011). Graphs were constructed with the published in vivo data
from nineteen different regions of the macaque cranium (Fig. 2).
The mean of experimental averages from in vivo shear strain is
depicted by the dotted black line and the dispersion (maximum
range defined by the means+two standard deviations for each
experiment) is depicted by the gray areas. Maximum shear strains
were calculated from the finite element model at each site using
strain data extracted in terms of 34 site—specific local xyz
coordinate systems. Each local coordinate system had its origin
at the node located at the center of each strain gage location and
its xy plane laid tangent to the surface of the cranium. Maximum
shear strain at the site was calculated using the formula:

VYmax =/ (Ex_éy)z +7)2(y 2)

where x, y, and z are coordinates of the site-specific coordinate
system and &,, &, and y,, are normal strain in the x-direction, normal
strain in the y-direction, and the engineering shear strain1 in the xy
plane, respectively. This enabled the maximum shear strain in the
plane of the surface to be calculated and any contributions to
maximum shear strain due to out-of-plane strains to be discarded.
This was necessary since strains measured by strain gages in the
in vivo experiments do not account for any strain components
involving the direction normal to the plane of the strain gage.

2.4. The models

2.4.1. Models 1 and 2: simple isotropic material properties

In models 1 and 2 (see Table 1 for model descriptions) the
macaque cranium was divided into three distinct materials -
trabecular bone, cortical bone, and teeth - consisting of isotropic

material properties (Table 2). In model 1 the input variables were
randomized with a CV of 0.2 and a Gaussian distribution. In model
2 the input variables were randomized with their experimentally
determined standard deviations and a Gaussian distribution
(Wang and Dechow, 2006).

2.4.2. Models 3 and 4: regional isotropic material properties

In models 3 and 4 the cranium was divided into 35 distinct
regions, increasing non-homogeneity from models 1 and 2. Each
region was assigned its own distinct set of isotropic material
properties which are defined in Table 3. Similar to models 1 and 2,
material properties were randomized with a CV of 20% and a
Gaussian distribution in model 3 and all the material properties
were randomized with their experimentally determined standard
deviations and a Gaussian distribution in model 4.

2.4.3. Models 5 and 6: regional orthotropic material properties

For models 5 and 6, the macaque cranium was divided into the
same regions as in Models 3 and 4. However, each region was
assigned its own set of orthotropic material properties, thus
increasing anisotropy. Exceptions to this were the teeth, trabe-
cular bone, nasal septum, and neural and basicranial regions,
which were modeled isotropically as in models 3 and 4. The
orthotropic material properties are given in Table 4. Similar to
models 3 and 4, material properties were randomized with a CV
of 20% and a Gaussian distribution in model 5 and all the material
properties were randomized with their experimentally deter-
mined standard deviations and a Gaussian distribution in
model 6.

When the material properties were experimentally deter-
mined (Wang and Dechow, 2006), the nomenclature was stan-
dardized such that E3 > E> > Eq, G13 > Gz > Gy, and
V12 > V3> Vq3. In general, the material properties tend to be
positively correlated to one another, so a larger E3 tends to result
in a larger E, and E,. There exists no exact mathematical function
that defines the relationships between each material property, so
correlation coefficients relating the material properties to each
other were calculated from empirical data (see Table 5). These
correlation coefficients were specified in the ANSYS Probabilistic
Design module.

2.4.4. All models

Comparisons of results between models 1 and 3 and models
2 and 4 provide two assessments of the effect of increasing non-
homogeneity in the skull that has on the various biomechanical
responses. Comparisons of results between models 3 and 5 and
models 4 and 6 provide two assessments of the effect that increasing
anisotropy in the skull has on various biomechanical responses.
Finally, comparisons between models 1 and 2, 3 and 4, and 5 and
6 provide an assessment of the effect of assuming constant
coefficient of variation for all material property values, versus using
coefficients of variations gleaned from experimental data.

For models 1, 3, and 5, the coefficients of variation were
calculated at sampling locations with modest-to-high magnitude
principal compressive, principal tensile, and von Mises stresses
and strains (Table 6 and Fig. 3). (“Modest-to-high magnitude”
means strains with a magnitude greater than 250 e and stresses
of greater than 3 MPa.) The coefficients of variation depict the
magnitudes by which the averages and standard deviations of the
stresses and strains at these various locations across the cranium
were affected relative to each other when a 20% variation was
applied to the material properties.
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Fig. 2. Results from the probabilistic analyses compared to the in vivo data. The gray area depicts the dispersion of the in vivo data, and the error bars depict the 95%
confidence interval (+/—2 standard deviations) of the shear strain at the various locations across the cranium (a) comparison between models 1 and 2 (3 region, isotropic
material properties), (b) comparison between models 3 and 4 (multiple region, isotropic material properties), and (c) comparison between models 5 and 6 (multiple region,
orthotropic).

3. Results In model 1, the principal and von Mises strains are significantly
more affected by variation in material properties than are the

3.1. Models 1, 3, and 5 principal and von Mises stresses, as is seen by the larger coefficients
of variation for the strains (see Table 6 and Fig. 3). As the material

Models 1, 3, and 5 provide a unique opportunity to see how properties vary with a coefficient of variation of 0.2, modest-to-high
variability in stresses and strains are affected by non-homogene- magnitude strains vary consistently with an average coefficient of
ity and anisotropy when standard variability in material proper- variation of 0.210, whereas the modest-to-high magnitude stresses

ties is applied. vary consistently with a coefficient of variation of only 0.016.
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Table 2

Mean material property values used for models 1 and 2 (three region isotropic).
The standard deviations in the table were used to randomize the material
properties in model 2; a CV of 0.2 was used to randomize the mean values of
the material properties for model 1.

Region Modulus of elasticity (MPa) Poisson’s ratio
Avg. Standard deviation Avg. Standard deviation
Cortical bone 17,060 2760 028 0.10
Teeth 70,000 14,000 030 0.06
Trabecular bone 637 127 0.28 0.056

Table 3

Mean material property values used for models 3 and 4 (multiple region isotropic).
The standard deviations in the table were used to randomize the material
properties in model 4; a CV of 0.2 was used to randomize the mean values of
the material properties for model 3.

Region Modulus of elasticity (MPa) Poisson’s ratio
Avg. Standard Avg. Standard
deviation deviation
Premaxilla 18,500 1700 0.18 0.07
P3-M1 alveolus 16,700 3000 024 0.13
M2-M3 alveolus 20,600 4400 024 0.07
Anterior palate 15,300 4200 036 0.11
Posterior palate 18,800 7900 026 0.17
Dorsal rostrum 19,900 3100 021 0.13
Lateral rostrum 18,100 5400 0.24 0.09
Root of zygoma 17,900 3000 0.30 0.06
Anterior zygomatic arch 20,800 8300 0.28 0.12
Posterior zygomatic arch 12,500 900 0.27 0.20
Medial orbital wall 14,600 8900 040 0.11
Postorbital bar 19,800 8200 022 0.14
Frontal torus 13,100 4200 024 0.18
Glabella 14,400 2900 0.14 0.10
Frontal squama 14,900 7800 0.27 0.14
Neuro- and basicrania 17,300 5000 028 0.14
Septum 13,194 3800 028 0.14
Teeth 70,000 20,300 030 0.15
Trab bone 637 185 028 0.14
Table 4

M.A. Berthaume et al. / Journal of Theoretical Biology 300 (2012) 242-253

As non-homogeneity increases from model 1 to 3 (see Fig. 4),
variation in the strains decreases from 0.210 to 0.180, but the
variation in strains is less consistent, as is denoted by the increase
in the standard deviation of the coefficients of variation from
0.007 to 0.047. Variation in the stresses, however, increases
greatly from 0.016 to 0.106, and like the strains, the variation in
stresses is less consistent in model 3 than in model 1.

Finally, as anisotropy increases from model 3 to 5 (see Fig. 5),
variation in both the stresses and strains decreases.

3.2. Models 2, 4, and 6

In model 2 the strains vary consistently with a coefficient of
variation of 0.165 while the stresses vary consistently at a lower
level of 0.025. As non-homogeneity increases from model 2 to 4
(see Fig. 4), the level of variation in strains increases greatly from
0.165 to 0.560 and the strains vary much less consistently. The
level of variation in the stresses also increases and the stresses
vary less consistently, but not to the level of variation in the
strains (see Table 6).

As anisotropy increases (see Fig. 5), the average coefficient of
variation in the strains decreases to 0.369 and the strains vary
more consistently than they did in model 2. However, the levels
of variation are still very inconsistent (meaning the coefficients of
variation have a large standard deviation), indicated by the
average coefficients of variation, which have a standard deviation
of 0.183. The variation in stresses again increases, this time to
0.150, but the stresses vary more consistently.

3.3. Comparing the models to in vivo data

Results from the probabilistic analyses are compared to the
in vivo data in Fig. 4. When validating a craniofacial FE model,
validation is typically achieved by comparing strains on the
model to in vivo or ex vivo strain data. Ideally, the in vivo or
ex vivo data would have come from the same individual who was
used to create the FE model, and the material properties and
muscle forces applied to the FE model would have been taken
from that same individual as well. Validation of the models was
considered to be good at most locations on the cranium (where

Mean material property values used for models 5 and 6 (multiple region orthotropic). The standard deviations in the table were used to randomize the material properties
in model 6; a CV of 0.2 was used to randomize the mean values of the material properties for model 5. The teeth, trabecular bone, septum, and neuro- and basicranium
were all given the isotropic material properties assigned in models 3 and 4 for both models 5 and 6.

Region Modulus of elasticity (MPa) Shear modulus (MPa) Poisson’s ratio
E1l E2 E3 G12 G23 G13 v12 v23 v13
Avg. Std. Avg. Std. Avg. Std. Avg.  Std. Avg.  Std. Avg.  Std. Avg. Std. Avg. Std. Avg. Std.
dev. dev. dev. dev. dev. dev. dev. dev. dev.
Premaxilla 10,000 1400 13,900 3900 18,500 1700 4400 1100 5200 1000 7300 1900 029 0.16 0.18 0.07 0.15 0.15
P3M1 alveolus 9900 3900 12,100 4000 16,700 3000 4300 1700 5800 2400 7400 2100 0.33 021 024 0.13 017 0.11
M2M3 alveolus 12,600 3900 15400 4000 20,600 4400 4900 1500 6400 2400 7900 2600 0.35 0.13 024 0.07 022 0.16
Anterior palate 7500 1400 8800 1500 15,300 4200 2600 400 2800 400 3600 900 041 0.06 036 0.11 026 0.11
Posterior palate 6400 1000 7500 1500 18,800 7900 2200 400 2500 400 3300 900 048 0.08 026 0.17 023 0.13
Dorsal rostrum 12,200 2100 14,000 2100 19,900 3100 5000 900 6900 1800 8900 2900 0.32 0.14 021 0.13 014 0.06
Lateral rostrum 11,500 5300 14,400 5400 18,100 5400 4700 2500 5300 2100 7300 3100 0.37 013 024 009 015 0.13
Root of zyg. arch 8900 2900 10,900 4400 17,900 3000 3700 1700 5300 1200 8600 3300 0.53 0.15 03 006 0.18 0.12
Anterior zyg. arch 8600 4700 12,400 5700 20,800 8300 4200 1900 4600 1500 8600 2800 0.39 0.19 028 0.12 022 0.17
Posterior zyg. 8200 2700 10,000 2900 12,500 900 3100 1100 3800 1100 4900 1600 0.34 0.10 027 020 024 0.19
arch

Med orbital wall 7100 4400 11,500 6500 14,600 8900 3600 2000 4200 2400 9000 5900 046 0.12 040 0.11 023 0.16
Postorbital bar 11,300 3600 13,100 3300 19,800 8200 4400 1500 6400 2200 8000 2500 044 007 022 014 015 0.13
Frontal torus 10,200 2900 11,200 3100 13,100 4200 4300 1400 5100 1900 6000 1800 0.32 0.20 0.24 0.18 0.19 0.08
Glabella 9200 2300 9700 2100 14,400 2900 3300 900 4800 1400 5100 1200 046 008 0.14 0.10 021 0.09
Frontal squama 7900 3800 11,000 5000 14,900 7800 3400 1500 4300 2300 7100 3500 049 0.12 027 0.14 018 0.18
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Table 5

Coefficients of correlation (R) for orthotropic material properties, calculated using data taken from Wang and Dechow (2006). E; /E, represents the coefficient of correlation

between E; and E,, G12/G3; the coefficient of correlation between G, and Gs1, etc.

Region Ey[E E>|E; Eq[E3 G12/G31 G31/G23 G12/G23 viz/v13 Vv13[vas viz/v13
Vault 0.900 0.910 0.830 0.829 0.579 0.529 0.273 0.423 0.440
Circumorbital 0.916 0.903 0.796 0.816 0.685 0.807 0.412 0.530 0.465
Zygomatic arch 0.904 0.881 0.801 0.747 0.545 0.687 0.642 0.512 0.279
Muzzle 0.933 0.925 0.946 0.681 0.319 0.312 0.600 0.383 0.708
Alveolus 0.564 0.724 0.579 0.798 0.564 0.402 0.177 0.283 0.306
Intraorbital 0.915 0.909 0.883 0.918 0.563 0.608 0.146 0.665 0.094
Palatine 0.704 0.585 0.159 0.889 0.439 0.623 0.842 0.208 0.328
Table 6

The coefficients of variation for the minimum and maximum principal and von Mises stresses and strains were calculated for modest-to-high magnitude stresses (greater
than 3 MPa) and microstrains (greater than 250 u¢) at each of the 34 sites across the cranium. The coefficients of variation were averaged and the standard deviations were
calculated to convey the magnitude to which the stresses and strains varied at the various sites across the cranium and how predictable this level of variation is.

Model Average coefficients of variation
Strains Stresses

Input variables with CV=0.2 (1) 3 Region, isotropic 0.210 + 0.007 0.016 + 0.009
(3) Multiple regions, isotropic 0.169 + 0.028 0.104 + 0.043
(5) Multiple regions, orthotropic 0.144 + 0.042 0.081 +0.025
Input variables with standard deviations based (2) 3 Region, isotropic 0.165 + 0.011 0.025 +0.017
on empirical data (4) Multiple regions, isotropic 0.560 + 0.334 0.124 + 0.043
(6) Multiple regions, orthotropic 0.369 +0.183 0.150+0.038

the FEA results fell within the experimental range) but poor in
some locations (i.e. the left and right orbital roofs). As non-
homogeneity and anisotropy increased from models 1 and 2 to
models 3 and 4 to models 5 and 6 (see Figs. 4 and 5), the FEA
results +/—2 standard deviations include or nearly include the
average from the in vivo data. When the cranium is modeled with
the highest level of simplicity (model 1, where anisotropy and
non-homogeneity are low and no empirical data is used to
calculate the standard deviations) the average in vivo shear strain
is within the range or nearly within the range of the FEA results
for only 10 out of the 20 locations. However, when the macaque
cranium is modeled with the highest level of accuracy (model 6),
the average in vivo shear strain is within or nearly within the
range of the FEA results for 18 out of the 20 locations.

This implies that model 6 is a more realistic model than model
1, and that modeling with a higher level of accuracy will give the
modeler a better chance of having in silico results that will match
the in vivo results. This also implies that when modeling simplis-
tically, a model that appears to be invalid could actually be valid
when uncertainty in material properties is accounted for.

When empirical data are used to calculate the CVs for material
properties and the cranium is modeled simplistically (model 2),
the variability in the shear strains is minimal. A large number of
the average shear strains also fall within the dispersion of the
in vivo data. As non-homogeneity increases (model 4), the
magnitude of the shear strains remains consistent but the
variability in the shear strains increases greatly. Finally, as
anisotropy increases (model 6), the magnitude of the shear strains
changes at multiple locations across the cranium and the varia-
bility in the shear strains increases.

When comparing the variability in the in vivo data to the
variability in the FEA results, the variability in the FEA results puts
a lower bound on the total variability of in vivo data, assuming
variability in the in vivo data due to muscle forces, morphology,
and material properties are all independent. Considering that
there are some locations where the variability in the FEA results
exceeds the variability in the in vivo data, this could imply there is
an error with the data set, an error with the model, or that the
assumption that variability in muscle forces, morphology, and

materials properties are independent could be false, i.e. muscles
forces, morphology, and material properties could be positively
correlated.

4. Discussion
4.1. Comparing models 1, 3, and 5 and models 2, 4, and 6

In all cases when a coefficient of variation of 0.2 is applied to
the material properties (models 1, 3, and 5), there is less
variability in the shear strain than when a coefficient of variation
calculated from empirical data is applied. Therefore, applying a
coefficient of variation of 0.2 to the material properties under-
estimates the variability in the shear strains across the cranium in
the FE model. This conclusion is further supported by the results
in Table 6 and Fig. 3, where the variability in the minimum and
maximum principal and von Mises stresses and strains is always
lower when a coefficient of variation of 0.2 is applied to the
material properties compared to when a coefficient of variation
calculated from empirical data is applied. When the cranium is
modeled most simply, i.e. consisting of three isotropic homoge-
neous materials (models 1 and 2), the variability in the moderate-
to-high minimum and maximum principal and von Mises stresses
and strains are less than when the cranium is modeled with the
highest level of accuracy (see models 5 and 6 in Table 6 and
Fig. 3). Therefore, it should be understood that when the cranium
is modeled as consisting of three homogeneous isotropic materi-
als, the level of variability due to uncertainty in material property
values in the stresses and strains is minimized. When the cranium
is modeled with greater material complexity by reducing the level
of homogeneity (model 4), the accuracy of the model remains the
same but the level of variability in stresses and strains due to
uncertainty in material property values increases (Table 6 and
Fig. 3).

Models 2, 4, and 6 show that when the variation in material
properties is known, variability in both stresses and strains
increases greatly as non-homogeneity and anisotropy increase.
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color in this figure legend, the reader is referred to the web version of this article.)

4.2. Testing the hypotheses

The first hypothesis, that uncertainty in material property
values will have little effect on high stresses and a large effect
in high strains for homogeneous isotropic models, is fully sup-
ported by models 1 and 2, as seen by the average coefficients of
variation reported in Table 5. For model 1 in which isotropic
material properties were randomized with CV=0.2, the average
CV for all stress measures at all sampling sites is only 0.016,
whereas the average coefficient of variation for modest to high
strains measures 0.210. In model 3, which used CVs of isotropic
material property values based on empirical data, the average CV
for stress was 0.025 and the average CV for strain was 0.16.

The second hypothesis is supported by the probabilistic
analysis results since, as non-homogeneity and anisotropy
increase, the CV for modest-to-high magnitude stresses increases
(see Table 6). The third hypothesis may be supported through the
results of this experiment. The error bars in Fig. 2 depict a 95%
confidence interval calculated from the probabilistic analyses. All
models have a large 95% confidence interval, which supports the
conclusion that variation in material properties causes significant
variation in maximum shear strain on the surface of the cranium.
Therefore, since the in vivo data were gathered from multiple

individuals, some of the variation in the data could be due to
variation in material properties and/or geometry of the cortical
bone between individuals.

When the material properties were varied with standard
deviations calculated from empirical data, the level of variation
in modest-to-high magnitude stresses and strains differs greatly
from when a 20% variation is applied to the material properties.
Models 1, 3, and 5 suggest that, if all material property values of a
system have about the same level of randomness, variability in
material property values causes variability in principal stresses to
increase and variability in principal strains to decrease as non-
homogeneity and anisotropy increase. However, the variability in
material property values is not constant in macaque crania. Since
the trends in variability in the stresses and strains differ from
models 1, 3, and 5 to models 2, 4, and 6 (see Table 6), this leads us
to conclude that the assumption of constant material property
variability produces inaccurate trends in variability in stresses
and strains with respect to how the skull is modeled in terms of
homogeneity and anisotropy.

Therefore, if a probabilistic analysis is to be carried out to
determine how variability in the material properties of bone
affect stress and strain, a knowledge of the actual biological
variability in material property values is required. This nullifies
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Fig. 4. In vivo data plotted against simulation results depicting how shear strain varies as non-homogeneity increases from model 1 to 3 and from model 2 to 4.

the fourth hypothesis, and implies that if such knowledge of the
variability in material property values is not known, trends in
variability in stresses and strains cannot be trusted as being
correct.

5. Conclusion

Ideally, an FE model of an individual’s cranium would be
constructed in which information pertaining to the material
properties and muscle forces of that individual’s cranium were
previously gathered, and in which in vivo or ex vivo data on that
individual that could be used to validate the model. However, in
practice this standard is difficult to achieve, and therefore an
understanding of how much variation in FE model results is due
to lack of accurate individual-specific data is needed. Our results
indicate that large variations in modest-to-high strains and lower
variations in modest-to-high stresses occur due to variation in
material property values. More work is needed to quantify how
variation in morphology between individuals and variation in
loads (due to both intra and inter-individual variation) affect
moderate-to-high stresses and strains in craniofacial FE models.

Also, the high sensitivity of modest-to-high strain versus the
low sensitivity of modest-to-high stresses due to randomness in
material property values across individuals may have implica-
tions in terms of bone remodeling. It is generally accepted that
bone remodeling occurs as a results of deformations that occur at
a microstructural level (Burra et al., 2010; Bonivtch et al., 2007;
You et al., 2001; Cowin, 1999; Cowin et al., 1995; Pavalko et al.,

2003). To date, there is no consensus as to what macroscopic
mechanics quantities are correlated with these deformations. If
microstructural deformations and bone remodeling are correlated
to strain, then one would expect bone remodeling to be highly
sensitive to variation in material properties, since such variability
causes a large level of variation in moderate-to-high microstrains.
If cellular deformations are correlated to stress, then one would
expect bone remodeling to be fairly insensitive to variations in
material properties, since we found moderate-to-high stress to
have relatively low variation due to variation in material property
values.

Of course, stress and strain are continuum mechanics con-
cepts, and the current investigation is focused on macro-level
mechanics, while the actual mechanical signature to which bone
responds is at the hierarchical level of the bone matrix that
directly affects cellular response (You et al., 2001; Cowin, 1999;
Cowin et al., 1995; Pavalko et al., 2003). However, little is known
about variation in microscale material properties in bone tissues
in three dimensions and how this variation may affect cellular
response.

Finally, we note that our data suggest that it is incorrect to
assume that variability in muscle forces, morphology, materials
properties, and other “cranial variables” are independent (the
error bars for the in silico results in Fig. 2 cover a much larger
spread than the error bars for the in vivo results). The fact that
positive correlations between these quantities would result in
less variability in stress and strain than if these quantities were
independent has evolutionary implications. Evolution could be
producing a robust system—one whose mechanical performance
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Fig. 5. In vivo data plotted against simulation data depicting how shear strain varies as anisotropy increases from model 3 to 5 and from model 4 to 6.

is relatively insensitive to variations or uncertainty in its
inputs—by developing positively correlated cranial variables
which reduce variability in shear strains during cranial function.
If this holistic view of cranial variables affecting mechanical
performance is correct, one might hypothesize that many of the
biomechanical variables in the cranium would evolve together.
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